Título: Effects of Microalgae as Biostimulants on Plant Growth, Content of Antioxidant Molecules and Total Antioxidant Capacity in Chenopodium quinoa Exposed to Salt Stress
Autor(es): ECHEVERRIA DE LABASTIDA MARIA CRISTINA, ANTONELLA CASTAGNA, LORENZA BELLANI, LUCIA GIORGETTI, MARCO SANTIN, SOFIA FIORENTINO
Fecha de publicación: 03-mar-2025
Resumen: Chenopodium quinoa Willd. is a halophytic plant valued for its nutritional and nutraceutical properties, as well as its adaptability to diverse soil and climatic conditions. Biostimulant application enhances plant quality and resilience under adverse environmental conditions. The effects of microalgae extracts (Ettlia pseudoalveolaris and Chlorella vulgaris) and salt stress (NaCl 100, 200, 300 mM) were evaluated on 7-day-old seedlings of two quinoa varieties, ‘Tunkahuan’ and ‘Regalona’. The analysis focused on the content of antioxidant molecules (total phenolics and flavonoids), total antioxidant capacity (measured by DPPH, 2,2-Diphenyl-1-picrylhydrazyl, and FRAP, Ferric Reducing Antioxidant Power, assays), reactive oxygen species (ROS), the levels of lutein, β-carotene, chlorophyll a and b. Microalgae extracts and salt stress treatments significantly increased antioxidant molecules in both quinoa varieties. The highest antioxidant activity, measured by the DPPH assay, was observed in ‘Regalona’, while a dose-dependent increase in antioxidant capacity, by the FRAP assay, was evident in ‘Tunkahuan’ treated with Ettlia. ROS level was reduced by Ettlia in ‘Tunkahuan’ but not in ‘Regalona’. Pigment content increased with higher salt concentrations but decreased with the addition of biostimulants. These findings suggest that the application of microalgae extracts enhances bioactive compounds, improving salinity resistance and increasing the nutraceutical value of quinoa sprouts.
Palabras clave: antioxidants and antioxidant activity; biostimulants; salt stress; sprouts; quinoa (Chenopodium quinoa Willd)
DOI: https://doi.org/10.3390/plants14050781
ISSN: 22237747
Tipo publicación: Artículo